
1



2

In	this	lecture,	we	will	consider	the	various	type	of	storage	(memory)	that	FPGAs	
allow	us	to	implement.		The	major	advantage	of	FPGAs	is	that	it	contains	lots	of	
small	blocks	of	memory	modules,	which	can	either	be	used	independently,	or	
combined	to	form	larger	memory	blocks.		They	also	provide	various	configurations	
such	as	multi-port	or	registered	input/output	for	data	and	address.

There	are	various	useful	references	you	can	look	up	if	you	are	interested	to	learn	
more	about	this.		For	the	purpose	of	examination,	the	contents	in	this	lecture	and	in	
the	VERI	experiment	are	sufficient.



3

The	simplest	form	of	storage	is	a	register	file.		All	microprocessors	have	register	files,	
which	are	known	as	“registers” in	the	architectural	context.		

Register	files	are	fast,	large	and	flexible.		They	are	generally	used	to	store	temporary	
data	for	easy	access	by	the	ALU	or	floating	point	unit	of	a	microprocessor,	or	for	
computational	engine	of	a	application	specify	digital	system.

On	the	FPGA,	register	files	are	often	implemented	with	the	D-FF’s	in	the	Adaptive	
Logic	Modules	(ALMs).		Each	ALM	has	two	D-FFs.		Therefore	a	32-bit	register	will	
take	up	16	ALMs.		Alternatively	one	could	also	use	the	static	memory	blocks	for	this	
purpose.



4

The	circuit	of	a	register	file	is	simple	– it	consists	of	arrays	of	D-FFs,	which	can	
be	disable	(and	output	becomes	high	impedance).		The	register	select	signals	
sel_reg0,	sel_reg1	etc.	enable	the	correct	register	to	put	the	data	on	the	data	
line	(called	bit	line	here).			The	read/write	control	signal	WE	is	used	to	
determine	if	you	are	reading	or	writing	to	the	register.



5

The	register	identification	(regid)	determines	which	register	you	are	trying	to	
access.		This	is	achieved	through	a	standard	decoder,	which	generate	a	one-
hot	code	word	to	select	the	appropriate	register	to	access.



6

Now	let	us	turn	to	the	Cyclone	V	FPGA.		The	FPGA	has	many	different	type	of	
resources	in	additional	to	Adaptive	Logic	Modules	(ALMs).		These	are:	memory	
blocks,	Digital	Signal	Processing	(DSP)	units,	phase-locked	loops	and	input/output	
pads.		In	addition,	there	is	a	dual-core	ARM	processor	and	its	associated	bus	
interface	circuit	(shown	in	light	green).

Here	we	focus	on	memory.		In	the	C5-SE-A5	series,	which	is	the	one	we	use	in	the	
DE1	board,	there	are	near	400	separate	memory	blocks,	each	with	10k	bits	of	
storage.		Together	with	the	ALMs,	there	is	4.45	Mbits	of	flexible	memory	storage	
available	to	the	designer.



7

Each	of	these	blocks	(known	as	M10K)	can	be	configured	with	different	depth	and	
data	width	as	shown	in	the	able	above.

Even	more	importantly,	the	can	also	be	configured	to	act	as	conventional	single-port	
memory,	or	simple	dual-port	with	one	port	for	read	and	one	port	for	write.		

Further,	they	can	be	made	to	be	true	dual-port,	both	ports	being	read/write	ports,	
or	as	a	shift	register,	a	ROM	or	a	first-in-first-out	buffer	(FIFO).



8

As	you	have	seen	in	the	VERI	experiment,	if	the	memory	block	is	a	ROM	(or	even	as	
a	RAM),	its	content	can	be	configured	via	a	memory	initialization	file	.mif.		The	
format	of	the	file	is	shown	here.				Typing	the	contents	of	a	1024	ROM	module	by	
hand	is	silly	and	impractical.		I	wrote	two	versions	of	a	simple	programme	to	
generate	this	.mif	file,	one	in	Matlab	and	one	in	Python.	Below	is	the	code	for	the	
Matlab	version.
The	ROM	is	produced	using	the	IP	Catalog	tool.		Here	is	a	1024	x	10	bit	ROM	
generated	with	all	input	and	output	registered	and	synchronised	with	the	clock	
signal.



9

In	the	experiment,	you	have	already	implemented	a	sine	wave	generator	using	the	
ROM	to	store	one	cycle	of	a	sine	wave.		The	counter	is	used	to	advance	the	phase	of	
the	sine	wave,	which	is	specified	as	the	address	X	of	the	ROM.		The	content	of	the	
ROM,	y=	F(x)	is	the	content	of	the	ROM	and	is	the	generated	wave	form.		Instead		of	
storing	a	sine	wave,	you	can	easily	store	any	other	signal	(such	as	a	voice	or	music	
segment).
In	order	implement	a	variable	frequency	sinewave,	you	could	modify	the	address	
counter	so	that	it	is	goes	up	not	only	by	1	count	for	each	clock	cycle,	but	by	N.	For	
example	if	N	is	2,	then	the	address	counter	will	skip	every	other	sample	in	the	ROM	
and	therefore	the	generated	sinewave	will	be	at	twice	the	signal	frequency.



10

Here	is	a	generated	single-port	memory	with	ALL	possible	signals	included.		
The	meaning	of	all	the	signals	are	self	explanatory.



11

Here	is	the	timing	of	the	RAM	configured	as	a	single	port.		Since	we	have	separate	
data	input	port	(data_a)	and	data	output	port	(q_a),	it	is	important	to	understand	
what	data	you	read	back	(old	or	new)	from	a	given	address	during	a	write	cycle.



12

Here	is	an	example	of	using	the	MegaWizard	manager	tool	in	Quartus.		We	
are	producing	a	1-port	RAM	with	1024	x	8,	all	signals	are	clocked.		The	
generator	produces	a	sample	header	file	(a	template)	which	defines	the	
interface	signal	to	the	generated	block.		Remember	you	must	tick	the	Verilog	
HDL	radio	button.



13

You	can	also	configure	the	M9K	memory	block	as		a	shift	register.		Here	is	an	
8-bit	16	stage	SR.		In	addition,	it	provides	“tap” outputs	for	every	stage,	i.e.	
16	x	8	=	128	output	signals.		This	is	very	useful	to	implement	FIR	filter	or	
perform	time	domain	convolution.



In	the	Part	IV	of	the	VERI	experiment,	you	will	be	using	a	FIFO	to	implement	
an	echo	synthesizer.		The	action	of	a	FIFO	is	shown	in	the	diagram	above.	

14



Here	is	a	generic	block	diagram	of	a	FIFO	with	its	typical	interface	signals.		
FIFO	is	a	form	of	queue.		Internally	there	typically	two	counters,	one	keeping	
track	of	the	read	address	(or	read	pointer)	and	another	counter	keeping	track	
of	the	write	address	(write	pointer).		There	needs	to	be	status	signals	such	as	
FULL,	which	is	asserted	if	the	FIFO	is	completely	filled	and	writing	any	more	
words	to	it	will	destroy	stored	data,	or	EMPTY,	which	signifies	that	there	are	
no	data	left	to	read.

15



16

FIFO	can	be	generated	using	the	IP	Catalog	manager	tool.		Here	is	an	example	of	a	
32	word	x	8	bit	FIFO.


