Imperial College
London

Lecture 14

FPGA Embedded Memory

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

af

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 1

Lecture Objectives

Different ways to use memory inside FPGAs
e Register File
 ROM and waveform generation
e First-in-First-Out memory
Memory resources inside Cyclone V FPGAs
MOK memory block
Library components in Quartus (IP Catalog)

*

* o o

References:
e “Cyclone V Device Handbook, Vol. 1"
e “Megafunction Overview User Guide”
* “RAM based shift register Megafunction User Guide”
e “SCFIFO and DCFIFO Megafunction User Guide”

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 2

In this lecture, we will consider the various type of storage (memory) that FPGAs
allow us to implement. The major advantage of FPGAs is that it contains lots of
small blocks of memory modules, which can either be used independently, or
combined to form larger memory blocks. They also provide various configurations
such as multi-port or registered input/output for data and address.

There are various useful references you can look up if you are interested to learn
more about this. For the purpose of examination, the contents in this lecture and in
the VERI experiment are sufficient.

Register File

+ Register file from microprocessor
clk

l

regid -
Redfile

o Vo

regid = register identifier (address of word in memory)
sizeof(regid) = log2(# of reg)
WE = write enable

WE Y-

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 3

The simplest form of storage is a register file. All microprocessors have register files,
which are known as “registers” in the architectural context.

Register files are fast, large and flexible. They are generally used to store temporary
data for easy access by the ALU or floating point unit of a microprocessor, or for
computational engine of a application specify digital system.

On the FPGA, register files are often implemented with the D-FF’s in the Adaptive
Logic Modules (ALMs). Each ALM has two D-FFs. Therefore a 32-bit register will
take up 16 ALMs. Alternatively one could also use the static memory blocks for this
purpose.

Register File Internals

+ For read operations, functionally the

. . |_reg0
regdfile is equivalent to a 2-D array S
of flipflops with tristate outputs on FF FF FF FF
each A 4 4
sel_regl
e MUX, but distributed
e Unary control > lFAFHﬁ— lFAFHﬁ— »
+ Cell with added write logic: A M M M
WE . .
L
RD_SELi
SELI — T E FAF > ST bit line; bidirectional wire
—
WR_SELI i
PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 4

The circuit of a register file is simple — it consists of arrays of D-FFs, which can
be disable (and output becomes high impedance). The register select signals
sel_reg0, sel_regl etc. enable the correct register to put the data on the data
line (called bit line here). The read/write control signal WE is used to
determine if you are reading or writing to the register.

Regid (address) Decoding

Decoder sel_reg1
T - regid ﬁ sel_regD
" > one-hot 000 (00000001
2 . encoo‘ing 001 (00000010
. 0100000000 [—p— 1M
l . 011(00001000 Ny
100 (00010000 —4)— 110
101|00100000 .
. 110|01000000 — 1) 101
regid 111 hooooooo ~ 100
>—d—
» The function of the address decoder is to ™ 011
.
generate a one-hot code word from the M
1Y)
address. —) 010
e Binary -> unary — 001
¢ Simplified DEMUX 4 10 = 1 if a2alad = 000
. . sell = ITacalav =
e The output is use for row selection. —’
e Many different circuits exist for this function. a2a1
A simple one is shown. a0
PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 5

The register identification (regid) determines which register you are trying to
access. This is achieved through a standard decoder, which generate a one-
hot code word to select the appropriate register to access.

Cyclone V FPGA resources

¢ The Cyclone V used in the DE1 board
(5CSEMAS5F31C6) has 31k ALMs

+ It also contains 4.45 Mbits of memory,
organised as 397 memory blocks, each

- a]
with 10 kbits of storage ALM E=
« It has 87 DSP Blocks (later) NG -
+ It has 16 phase-locked loops for clock }E N
generation (later) - B]
=
- - m——
B: B E:
B [=
=E E=E
B o = 1
. mu I
. - -
- - -
. LIl L_IN
o - -

General-Pui

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 6

Now let us turn to the Cyclone V FPGA. The FPGA has many different type of
resources in additional to Adaptive Logic Modules (ALMs). These are: memory
blocks, Digital Signal Processing (DSP) units, phase-locked loops and input/output
pads. In addition, there is a dual-core ARM processor and its associated bus
interface circuit (shown in light green).

Here we focus on memory. In the C5-SE-A5 series, which is the one we use in the
DE1 board, there are near 400 separate memory blocks, each with 10k bits of
storage. Together with the ALMs, there is 4.45 Mbits of flexible memory storage
available to the designer.

Cyclone V Embedded Memory

+ Each 10kbit memory block (M10K) can be
configured with different data width from 1 bit to 40

bit wide

+ It also has multiple operating modes (which is user
configurable), of which we will focus on the
following only: single-port, shift-register, ROM,

FIFO

m Single-port

®m Simple dual-port
® True dual-port

m Shift-register

= ROM

m FIFO

MLAB 32 x16, x18, or x20
256 x40 or x32
512 x20 or x16
1K x10 or x8
M10K
2K x5or x4
4K x2
8K x1

PYKC 27 Nov 2018

E2.1 Digital Electronics

Lecture 14 Slide 7

Each of these blocks (known as M10K) can be configured with different depth and
data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional single-port
memory, or simple dual-port with one port for read and one port for write.

Further, they can be made to be true dual-port, both ports being read/write ports,
or as a shift register, a ROM or a first-in-first-out buffer (FIFO).

Intialization of ROM Contents (1k x 8)

¢ Create ROM and initialize its content in a .mif file:

|-~ ROM Initialization file
WIDTH = 10;
DEPTH = 1024;

rom ADDRESS_RADIX = HEX;
Kaddress[Q..O] DATA_RADIX = HEX;
CONTENT
BEGIN
0 : 200;
1: 203;
2 : 206;
3 : 209;
4 : 20C;
5 : 20F;
6 : 212;
7B zaloe
8 : 219;
9 : 21C;
A : 21F;

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 8

As you have seen in the VERI experiment, if the memory block is a ROM (or even as
a RAM), its content can be configured via a memory initialization file .mif. The
format of the file is shown here. Typing the contents of a 1024 ROM module by
hand is silly and impractical. | wrote two versions of a simple programme to
generate this .mif file, one in Matlab and one in Python. Below is the code for the
Matlab version.

The ROM is produced using the IP Catalog tool. Here is a 1024 x 10 bit ROM
generated with all input and output registered and synchronised with the clock

$|gr1a|- % Purpose: MATLAB script to produce contents of a ROM that stores
% one cycle of sinewave
% Inputs: None
% Outputs: rom_data.mif file
% Author: Peter Cheung
% Version: 1.0
% Date: 20 Nov 2011

DEPTH = 1024;
WIDTH = 10;
OUTMAX = 27WIDTH - 1;

% Size of ROM
% Size of data in bits
% Amplitude of sinewave

filename = 'rom_data.mif';
fid = fopen(filename, 'w');

fprintf(fid, '-— ROM Initialization file\n');
fprintf(fid, 'WIDTH = %d;\n',WIDTH);
fprintf(fid, 'DEPTH = %d;\n',DEPTH);
fprintf(fid, 'ADDRESS_RADIX = HEX;\n');
fprintf(fid, 'DATA_RADIX = HEX;\n');
fprintf(fid, 'CONTENT\nBEGIN\n');

for address = 0:1023
angle = (addressx2xpi)/DEPTH;
sine_value = sin(angle);
data = (sine_valuex0.5%0UTMAX) + OUTMAXx0.5;

fprintf(fid, '%4X :
end

%4X;\n',address, int16(data));

fprintf(fid, 'END\n');
fclose(fid); £3
disp('Finished');

Sinewave Generation

+ Generate any waveform or function y = F'(x) using table lookup
¢ Phase counter increment phase whenever step goes high
+ ROM stores one cycle of sinewave to produce F(x)
+ Digital-to-Analogue convert and the PWM DAC generate the analogue outputs on
L & R channels
Address A[9:0] D[9:0'
counter A 1Kx10 »p) data_in
(10-bit) ROM SPl interface
P spi2dac to DAC
e pex load
SOMH o
z . 10kHz sampling pulse
__E 5000 = load
> clk ‘ pwm_out
pwm to LP filter
data_in
PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 9

In the experiment, you have already implemented a sine wave generator using the
ROM to store one cycle of a sine wave. The counter is used to advance the phase of
the sine wave, which is specified as the address X of the ROM. The content of the
ROM, y= F(x) is the content of the ROM and is the generated wave form. Instead of
storing a sine wave, you can easily store any other signal (such as a voice or music
segment).

In order implement a variable frequency sinewave, you could modify the address
counter so that it is goes up not only by 1 count for each clock cycle, but by N. For
example if N is 2, then the address counter will skip every other sample in the ROM
and therefore the generated sinewave will be at twice the signal frequency.

Single-port Memory (M10K as RAM)

datal)
address]]
wren
byteenal]
addressstall
inclock
inclocken
rden
aclr

ql) —>
outclock <\«

oulclocken ¢———

Signalname | __________meaning________

data[]
address|]
al]
wren
rden
aclr
inclock
outclock

Write data port
Read/write address port
Read data port
Write enable
Read enable
Asynchronous clear
Clock signal to control writing
Clock signal to control reading

PYKC 27 Nov 2018

E2.1 Digital Electronics

Lecture 14 Slide 10

Here is a generated single-port memory with ALL possible signals included.

The meaning of all the signals

are self explanatory.

10

Single-port Memory Timing

During a write operation, the behavior of the RAM outputs is configurable. If you
activate rden during a write operation, the RAM outputs show either the new data
being written or the old data at that address. If you perform a write operation with
rden deactivated, the RAM outputs retain the values they held during the most
recent active rden signal.

To choose the desired behavior, set the Read-During-Write option to either New Data
or Old Data in the RAM MegaWizard Plug-In Manager in the Quartus IT software.

wo /NSNS S\

wren_a

rden_a

_/
/
address.a a0 X al X
S 0 0 D D D E
a.a (old date) >@(om aap A >< B %(omamx D m

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 11

data_a

Here is the timing of the RAM configured as a single port. Since we have separate
data input port (data_a) and data output port (g_a), it is important to understand
what data you read back (old or new) from a given address during a write cycle.

11

How to use M10K memory block? (1k x 8)

+ Use IP Catalog manager tool in Quartus to produce memory of the

correct configuration:

IP Catalog
Q

@ x|

X

l Avadabe
4 Library
£ Clock Source
Avalon Verification Sute
4 Basic Functions
Arithmetic
Bridges and Adaptors
Clocks, PLLs and Resets
Configuration and Programming
Vo
Miscellaneous
4 On Chip Memory
*~ FFO
¥ RAM initiakzer
£ RAM: 1-PORT
RAM: 2-PORT
™ ROM: 1-PORT
~ ROM: 2.PORT
£ Shift register (RAM-based)

~

// synopsys tr

“timescale 1 p

// synopsys tr

module RAM (
address,
clock,
data,
wren,

q);

input [9
input
input [7
input
output [7

ata[7..0
wren

RAM

 address[9..0]

lock

:0] address;

clock;

:0] data;
wren;

:0] q;

PYKC 27 Nov 2018

E2.1 Digital Electronics

Lecture 14 Slide 12

Here is an example of using the MegaWizard manager tool in Quartus. We
are producing a 1-port RAM with 1024 x 8, all signals are clocked. The
generator produces a sample header file (a template) which defines the
interface signal to the generated block. Remember you must tick the Verilog

HDL radio button.

12

M10K Memory as Shift Register (8-bit 16 stages)

module SR (
clock,
shiftin,
shiftout,
taps);

SR
altshift_taps
E shiftin[7..0] shiftout[7..0]

taps[127..0]

input clock;

input [7:0] shiftin;
output [7:0] shiftout;
output [127:0] taps;

s shiftout[7:0]
shiftin[7:0
;1116|15|14|13| ----- 4|3 |21 —
v v vy v ¥ ¥y
tap[127:0]
PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 13

You can also configure the M9K memory block as a shift register. Here is an
8-bit 16 stage SR. In addition, it provides “tap” outputs for every stage, i.e.
16 x 8 =128 output signals. This is very useful to implement FIR filter or
perform time domain convolution.

13

First-in-first-out (FIFO) Memory

¢ Used to implement queues. ¢ Producer can perform many writes without
+ These find common use in computers consumer performing any reads (or vice
and communication circuits. versa). However, because of finite buffer

size, on average, need equal number of
reads and writes.
¢ Typical uses:
¢ interfacing I/O devices. Example
network interface. Data bursts from
network, then processor bursts to
32| 1f— memory buffer (or reads one word at a
time from interface). Operations not
synchronized.

e Example: Audio output. Processor
produces output samples in bursts
(during process swap-in time). Audio

after read DAC clocks it out at constant sample

rate.

¢ Generally, used for rate matching data
producer and consumer:

stating state

after write

producer
'S
w
N
consumer

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 14

In the Part IV of the VERI experiment, you will be using a FIFO to implement
an echo synthesizer. The action of a FIFO is shown in the diagram above.

14

FIFO Interfaces

| | Address pointers are used internally to keep
—p RST CLK next write position and next read position into
N a dual-port memory.

*

_.W

. FIFO
FULL write ptr —
‘ EMPTY <—read ptr
— RE
“— Dour + If pointers equal after write = FULL:

+ After write or read operation, FULL

and EMPTY indicate status of write ptr — <—read ptr
buffer.

« Used by external logic to control + If pointers equal after read = EMPTY:
own reading from or writing to the
buffer. write ptr —> <—read ptr

¢ FIFO resets to EMPTY state.

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 15

Here is a generic block diagram of a FIFO with its typical interface signals.
FIFO is a form of queue. Internally there typically two counters, one keeping
track of the read address (or read pointer) and another counter keeping track
of the write address (write pointer). There needs to be status signals such as
FULL, which is asserted if the FIFO is completely filled and writing any more
words to it will destroy stored data, or EMPTY, which signifies that there are
no data left to read.

15

M10K Memory as FIFO (8-bit x 32 word)

- module FIFO (

F”:O clock,

data,

#— data[7..0] q[7..0] rdzeq,
sclr,
wrreq,

*— wrreq full empty,

*—{ rdreq empty f';‘ll'
al

*—> clock input clock;
input [7:0] data;

#—|sclr § bits x 32 wordg input rdreq;
input sclr;
input wrredq;
output empty;
output full;

output [7:0] a:

endmodule

PYKC 27 Nov 2018 E2.1 Digital Electronics Lecture 14 Slide 16

FIFO can be generated using the IP Catalog manager tool. Here is an example of a
32 word x 8 bit FIFO.

16

